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Abstract

We study the generalized conjugate gradient scheme
based on the k-line block Jacobi splitting A = N-N for
solving model two-dimensional parabolic and elliptic
difference equaticvns AU = . a represents the matrix
cha-thh. Eigenvalues of ll-lll cluster, and the cluster
radii decresse as ch” or k increases. ‘e discuss com-
putations Jith k = 4, 8, 16, 32, and ck® = 0, b, 2.

(*) This work was supported by the U.S. Department of
Ecergy under Contract W-7405-Eng-36, and by the Office
of Ncval Research under Contract NN0O014-76-C-0341.

1. Iatroduction

Direct iterative methods for solving the systes

NS (1.1)

split the matrix A into s« difference

AwlM-N, (1.2)
Convergence of the methods is governed by the eigenval-
ues of the matrix H’ll. W¥hile studying block iterative
methods for two-dimensional elliptic and parabolic
problems, Parter sud Utcucnult.m noticed that vhen the
model problem has a form of strong disgonsl dominance,
eigenvalues of the k-line block Jucobi matrix form
clusters. The generalized conjugate gradient -thodz
based on this splitting therefore should be an effec~
tive way to solve the difference equations, for it is
well Foown that clustering improves coanvergence of the
conjugate gradient iterates. Mere we present some nu-
merical experiments, together with estimstes of the ei-
genvalues, that not only confirm this expectation bug
also show that some clusters themselves coalesce.

The model prodlem
Impose & mesh with uniform spacing

b= 1/(P+1) (1.3)

on the unit square {} := {(x,y) ¢ !2 :08x,y81},
and let ("1'yj) := (il:,jh). ‘The interior mesh points
O.h and the discrete boundary anh are the sets Oh 1=
{(xi.y“) : 184, §J §$P} and anh = ((li.yj) :{=0or
s P+1, or § = 0 or = P+1}. A mesh vector U= (U"i) is
a function defined on the entire mesh hh =y v ahh
The discrete Laplace operator is defined at points

1nﬂh by

2
(U1, 4 i (U 4= 2y + U, O/
O R NS T

We suppose that c 2 0 and 0 § o § 2 are given constants
snd we define an elliptic difference operator l‘h by

) . 0‘2 -
u.hu,m :® ch uM lAhu]t,j’ (1.4)
Note that, although the mesh vector U is defined on ﬂh.
the vectors AhU ond x.hu are defined only at the inte-
rior mesh points. Given a mesh vector F, the model
problem is to find s mesh vector U satisfying

thlflnﬂh, UiOonmh. (1.5)
After choosing an ordering of the mesh points, we
let A D¢ the matrix representing hzl.h. and get a system
(1.1) of order Pz. ¥ indicates the result of ordering
the components of th. Using & stendard ordering, A
cen be vritten as the PxP block tridiagcnal matrix
Am (-, T, Kl (1.6)
wvhose entries are mstrices of order P: T is the PxP

tridisgoaal matrix T := (-1, d+ch”, '”P snd £ denotes
the PxP identity matrix.

The nignificance of @

Ifo=2, l\ given by (1.4) 1s a regular elliptic
ditference oparstor. Some evaluation of different
splittings has baen attempted for regular problems when
A 1o symmetric snd positive dcunln.". Our estimates
shov that the k-line Jacobi splitting works well for
the model nperator (1.4),



If 0 < 2, then Lh is a singularly perturbed opera-
tor, A is strongly disgonally dominant, and the eigen-
values of M !N bunch tightly. The case @ = 0 arises in
applying block iterative methods to elliptic problems
in higher dilenlionn.lo
parabolic operator coalat-A may give at each time level
an elliptic operator c/t-A.

Discrete-time schemes for the

Conditions on the ratio
hzlt then lead to singularly perturbed operators (1.4)
with 0 < @ < 2. For example, a comson choice of T in
the Crank-Nicolson method yields o = 1,

When 0 < @ § 2, the rspectral radius p of H'IN for
the k-line Jacobi scheme 1811 p= 1-kh%const. Conse-
quently 0(1/(kh°)l/2) sceps of the related successive
overrelaxation method with best w are needed to reduce
any initizl error by a fixed factor. In contrast, if
H-lN has 2/h distinct eigenvalues, then in principle
the conjugate gradient method converges to the solution
from any initial guess in at wmost 2/h steps One hopes
for similar behavior, though not finite termipation in
so few steps, if the eigenvalues form 2/h clusters.

In section 2 we discuss some numerical experiments
that suggest the eigenvalues of H'IN for the k<line Ja-
cobi splitting cluster strongly. A description of this
splitting for the model problem, a statement of the
generalized conjugate gradient method and the optimal-
ity theorsm, and an sppraisal of the effect of cluster-
ing appear in section 3. We sketch in section 4 a der-
ivetion of bounds on thv size and number of clusters.

Cur method of analysis scems limited to the model
prohlem. Nevertheless, we expect that the clustering
resilts ve outline here hold more generally,

2. Numerical experiments

We used the generalized conjugate gradient algo-
rithe and the k-line Jacobi asplitting (3.3) to solve
the equation (1.1) that comes from the model problem
(1.5) on & mesh vith ¥ = 128. We chose for ch” the
values 0, h, and 2. These typical values correspond,
respectively, to s regular elliptic problem, s singu-
larly perturbed elliptic problem arising from s dis-
crete-time scheme for a parsbolic problem, and a singu-
larly pertucbed elliptic problem that comer from treat-
ing the model thiae-dimensicnal operstor by a block
iterative method whose basic block is a plane.

To minimize the effects of roundoff, we set F + 0;
hence the solution fu U » 0, and the error of each it-
erste U(“) is the iterate itsell. We took U(o) to be
the vector with components all 1. Computations with
different ¥ or U®) snowed very sisilar bebavior. The
calculations were doae on the Cray-1 at Los Alamos.

In each figure the horizontal axis is the number v
of iterations, and the vertical axis is the log of the
Euclidean norm or A-norm (see (3.6)) of the error E(“)
H U-U(“), or the Euclidean norm of the residual R(v)

H ?-AU(v), for various values of k and of ch®.

2

-10
-14
=18 %0 80 130 160 700

Figure 1. 1£(V)y, IE(\’)IA, and IRY) (ch® = 0, Kk = 4)

A~

AR
\

-6

7l AV

=14 L\
(VR WA

\ N

~18, 40 80 120 160 200

Figure 2. I!(\’)IA for various k (ch° u 0)
The relstion bctwc;n IE(“)IA. I!(“)l, and IR(v)l

is shown fn Figure 1. Note that IE(\’)IA
this {s predicted by the Optimality Theorem 3.2.

is monotone;
2,3,6



In contrast, the residuals bounce around and even in-
crease just before the "cliffs." One has access only
to the residuals in practice, and should be careful not
to terminate the algorithm just before a dramatic im-

Figures 3-5 show the effect of increasing k, for
fixed cha, vhile Figures 6-7 display the result of in-

creasing ch? for fixed k.

provement in the error is obtained. 4
Figure 2 displays IE(“)IA, and Figure 3 plots
IR(v)l, for ch® = 0 and differeat k. Only IR(v)l is 0
plotted in the remaining graphs.
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The "cliffs and plateaus” of theae graphs have

been noticed bnforc."s'. Their location with respect
to the number of {terations closely reflects the number

n of distinct clusters of eigenvelues of N'll. The



analysis of section 4 aemonstrates for the k-line block
Jacobi splitting that eigenvaluzs will cluster, and in-
dicatas that cliffs should appear every n steps, where
n is at worst 2P+1. When n is much less than 2P, we
suspect that the clusters themselves are coalescing.
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Figure 7. |R(v)| for various ch® (k = 16)

The plots show that convergence improves us cb” or
k increases; they also suggest that n is significantly
less than 2P. When ch” is 0 or h, it appears that n &
75, 55, 45, 35 for k r 4, 8, 16, 32, rcspectively.
Convergence is so rapid that no plateau appears when
ch® = 2, It is possible that in fact n is about twice
as big as we now believe; to check this point, compu-
tations in high precision are being done. But even if

n ¥ 150, about 40% of the clusters have coalesced.

3. The conjugate gradient methnd with k-line blocks

The k-iine block Jacobi splitting
In the horizontal k-line block structure

each block of U comprises the uanknowns U1 j associated
4
with the points (x‘.yj) on k consecutive horizontal

9,10,11

grid lines. Let k be a divisor of P, so that
P 2 kQ for some integer Q. 3.1)
The k=-line blocks are U. . (ul.k(l'l)‘j : 181 8P,

1835k} (18984Q). This decumposition or U in-
duces o block structure in A. If [ is the PxP identity
and B and R are the kxk block matrices

E
S := [-E, T, -E]k, R :=
0 0

then A is the block tridiagonal matrix [-R, S, -Rt)
whose entries are matrices of order kP.

A direct iterative scheme for solving (1.1) splits
A as in (1.2). Choosing & first guess U' /, we get a
sequence {U(V)} by solving HU(“+1) = NU(“)+?. When A
is nonsingular the sequence converges to the solution
of (1.1) independently of U(®) if and only if

Q

p := max {|A] : det(AM-N) = 0},

the spectral radius of H-IN, satisfies p < 1. Hence we
are led to study the eigenvalue problem

AMU = NU. (3.2)

In the k-line Yacobi scheme, A splits into the
block watrices

M= [0, S, 0lg, N :=(R,0, R‘]Q; (3.3)
it is evident from (1.6) and (3.3) that A and M are
symietric and positive definite and N is nonnegative.
Hence p < 1, and we may rewrite (3.2) to get

OAU = NU, 0o := A/(1 = A). (3.4)

Furthercore, nonzaro eigenvalues of u~ 1N occur in
n
signed pairs o, 109,11,12,13

The _generslized conjugate gradient method

Splittings (1.2) also play a role in the generai-
ized conjugate gradient lche-e.z The wethod assumes A
to be symmetric positive definite. Ir this section M
is any symmetric positive definite matrix of the same
order £ as A,

Algoriths 3.1, The ,onornllacd conjugate gradient
method. Choose M. Let U be a first guess at the

solution U of (1.1), set v := 0, and fix an a-bitrary
V('1). Generste the sequence [U(v)l by tho following
stepc. Step 1: Obtain Z(“) a8 the solution of

wz™ o ¥ . ), (3.%)

atop if Z(v) « 0. Step 7: Compute

ifve0

0
Bu ] {(;("),nz("))/(z("").nz(‘"”) ifv>o0,



MO BPIL) B va(v-l).

Step 3: Compute

a, = 2,1z v vy,
WD) oy 4 gy,

advance v, and return to step 1. O

Note that 2'") = 0 iff UY) solves (1.1). The
coefficients a  and B, are chosen so that (Z(i),HZ(J))
=0 if i #3j. It follows from this M-orthogonality
property that {U(v)} converges to the solution U of
(1.1) in at most £ staps. In practice, roundoff causes
a gradual loss of M-orthogonality and cousequent fail-
ure of the finite termination property; hence we view
the method as an iterative schene.z’ »3

The key result about this scheme is the Optimality
Theorem, which =- neglecting roundoff -- describes the
convergence of {U(“)}. We let gv be the set of real
polynomials of degree no greater than v, and recall
that any positive definite matrix 8 defines a norm by

1/2.

Xig = (X,BX) (3.6)

Theorem 3.2. The optimality theorel.2'5'6 Denote
by U the solution of (1.1), and by {Otgjj the genersl-
Then

ized conjugate gradient iterates.

ot | Uli (3.7)

= min (1T - kpOI® - und i pap),
vhere

K:=wla=1-n1. 0 (3.8)
Let m(x) be the minimal polynomial of K, so that

a(K) = 0. lLet Ky» «oy Ky De the distinct eigenvalues

of K. Because K is similar to s real symmetric matrix

(hence diagonalizable), m(k) = n?.l(x-x ). No Kj is

zero, 80 m(K) = ll-xp(x)]nj(-xj) for some particular

P @R, These remarks prove:

Corollary 3.3. If K has exactly n distinct eigen-

values, then U'™ = U and so the generalized conjugste
gradient method converges {n at most n steps. O

The effect of clustering

The original conjugate gradient lcthod6 set N =],
Corollary 3.3 says to pick M so that K has as few dis-
tinct eigenvalues as possible, subject to the condition
that (3.5) be "easy" to solve. Hence the choice ¥ = A

is not practical. But if the eigenvalues of X cluster
about n distinct values {&J}, IU(“)-UIA should be
small. Now we quantify this expectation.

By (3.8) the eigenvalues A, of NN and K, of K
are related according to the equation k = 1-A. We
therefore impose conditions on the eigenvalues of K in
terms of Ai. These conditions are motivated by the
facts regarding the k-line Jacobi splitting (3.3) set
down before. We assume that the spectral radius p of
M IN is tess than 1, the nonzero eigenvalues of nly
occur in signed pairs tA,, and all the eigenvalues of
H'IN cluster. Precisely, we suppose there are nonnegs-
tive aumbers Ox and Ar, 1SS a, sv thet for any non-
zZero Ai there is an r for which

Ay =A 1§88, or IA +A|S 6:' (3.9)
Without loss of generality we may take =ach ir <1. To
determine the behavior of {U(v)}, we appraise the right
aond side of (3.7). Clearly

(x - [14A,1)(x = [1-A,])
aK) := (1 - ) n; R i

=] P’y
2
- A
has t:2 required form 1-kp(x). Fix any eigenvalue L

of K. Evidently K, =1 iff Ai = 0, and then i(xi) =z 0.
1f Ky # 1, then Ai # 0, and by (3.9) for some r

IATIA, = A_1IA, + A
IR R e

Q(Aivr)

22

1- A8
$ 28,Q0A,0)/(1 - D),

vhere

I - A%
Q(A,r) := 1

b SR L

12
1 Aj

o (3.10)

It follows that ir some norm (e.g., the Euclidean norm
of the diagonal matrix to which K is similar) &(K) is
of order nlxrlbr) in magnitude, and therefore small if
the clusters are small. By the Optimality Theoream 3.2,
then, IU(Z'*I)-UI: z O(max [Gr :18r8s)).

Thus we need to determine whether the eigenvalues
of , or equivalentl s the eigenvalues of H'IN. cluster
for tue a-1ine block Jacobi splitting (3.3).

4, Estimates of the eigenvalues .

Because the spectral radius of H'IN is less then
1, we csn tonvert the eigenvalue problem (3.2) for A
into the eigenvalue problem (3.4) for 0. We restrict



attention to the case k 2 3.
*3 sin Mirh show that each 0 is an eigenvalue of

The test vectors U(r) 1=

oB(B(r) 1) = Fy(") “.1)
for some r, 1 S r § P. Here w(r) € BP and
B(r) := 2(2 - cos nrh) + ch”; (4.2)

B{B] is the tridiagonal matrix [-1, B, -1] of order P.
N is also a tridiagonal matrix of order P, whose action
on vectors ¢ := (01, ¢2, ..,¢P)t is given by

1$sss8Q1,0

i - oks*’l =0
( °]k8*0 =
s 1585Q1,0=1,
[ﬂ¢}j = 0 for any other subscript j.

B is positive definite and N is symmetric, soc for
each r there are P linearly independent eigenvectors ¢
and P (counting multiplicities) associated eigenvalues
o of (4.1).
bles procedure provides all the eigenvectors of (3.4).

Jt follows that this separatiou of varia-

Before proczeding, we recall some properties of

the Gaussian algorithm for tridiagonal uysteml.7'12

Lemma 4.1. Let k 2 3. Consider the linecar system

-¢j‘l + BOJ - Oj*l =0 (1358 k-2),

vhere B & 2, LY and )., re given. Define {Ej} by

Eo t= 0, Ej = 1/(B - Ej_l) (1358 k-2) (4.3)
and set
o, ® EiEz"‘Ek-z' bk = Ek-z‘ (b.4)

Then
O A T by TN g,

Furthermore, {E,} 's a2 monotone incressing sequence in
the interval (0,1]), and as k + =

by * by = (B - (B2 - ©My2, a4 s

When B > 2, this convergence is exponentially faut, and
vhen f = 2 we have o * 1/(k=1), bk = (k-2)/{k-1). O

Now fix r and define B by (4.2). W2 use Lemms 4.1
to eliminate those equations and cérresponding unknowns
i (4.1) for which the right hand side is sero.

Lemma 4.2. Let 0 # 0 be an eigenvalue and § the

agsociated eigenvector of (4.1), and set

Yy:=1+1/0, (4.5)

(1 $s $Q-1).

g2s-l = t"ks' g2s = wks+1

Then ¢ must catisfy the homogeneous system Xﬁ =0,
where A := A(B,y) is the block tridiagonal matrix

K:=1c,p, ¢ Asisqn
with 2x2 blocks
D. = i B-beyr Y — | B-by ¥ l
1 ,
Y Bby ' Y B-b,
_ B-bk -y _ 0 -8,
DQ_1 = , GC:= . 0
-y B'bk*l 0 0

Nonzero eigenvalues 0 of (4.1) thus correspond to
values of y for which Ais singular. We bound y by a
Gerschgorin argument, and so estimate nonzero eigenval-

ues A of (3.2) == for y = 1/A from (4.5) and (3.4).

Theorem 4.3. If the matrix A is singular, then
any aonzero eigenvslue A of H'IN satisfies

HIAL = AL S 8(B,K)/(B(x) = b) § 8(B,K),  (4.6)

vhere

B(B.K) = ay + (b, - k+l), .7

,=znmn+<mn -0
We see then that nonzero eigenvalues A of (3.2)
cluster about the 2P values tAr. 1Sr 8P, The situs-
tion described after Corollary 3.3 now holds, and the
numbers 6r of that discussion are the values 8(B(r),k)
defined by (4.7), (4.3), and (4.4) with p = B(r). So
even in the worst cnle. in which ¢ = 0 and min {ﬁ(r)}
= 4~2cos nth 2 2+(nh) , we have no more than 2:+l clus~
ters with s = P and 6: = O(h).
In fact, the eigenvalues bunch in another vay as
A is a continuous function of rh, and IA - Aql
z O(hz) whcn r and q are near P. So the cluutern them-
selves coalesce, for their centers have only O(hz) sep
sration for large r. The plots in section 2 indicate
that many of the clusters voalesce. In Figure 8 ris
the horizontal and Ar the vertical axis.
these curves are flat: Ar
r> 62 (33 if ch”

well,

For large r
changes by less than 0.1 if
a 2], less than 0.01 if » > 105 [97).
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A, for ch? = o,

120
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If B > 2, the domirant term of the cluster radius

8(B,k) is a

for the term dk iz

l.':‘,.-b“l converges to 0

When B = 2,

B =4 - 2cos nth
2 .9759419-0

L

g=2+h
= .9157456-0
h = 1/129

B=d
x ,2679492-0

rapidly; this is shown in Table 1 below.
dk = A 6(B,k) decreases as B or k increase,
k a, dk 6(B,k)
4 .333-0 .226-0 .560-0
.142-0 .102-0 .244-0
16  .652-1 .413-1 .106-0
26 .613-1 .220-1 .632-1
32 .294-1 .130-1 .424-1
.330-0 .172-0 .502-0
.134-0 .571-1 .191-0
16 .507-1 112-1 .619-1
2 23111 . 262-2 .263-1
32 .116-1 .633-3 .122-1
.667-1 .920-4 .668-1
5443 .245-8 .344-3
16 .913-8 .173-17  .913-8
26 .243-12  .122-26 .243-12
32 64417 .0 .644-17
Table 1.

Cluster radii 8(B,k) for diffecent k snd B.

The jth factor IAZ-AT1/11-A5) of Q(A.r) dcfined by

(3.10) is no grester than 1 whenever % H l+A2
clear from (4.7, that 2A2 S 1 vhenever

2.12132.

terms of Q(r) = (n/(l A )

It ia
g(]) 2 32 4

lele 2 gives vury pcultliltic bounds on Q in

Jki >1, § 4 ¢

Q is

much smaller then Q becauve of the factors lAz-AJI

(1]

(2]

(3)

(4]

(5]

(6]

(71

(8]

(91

(10]

(1}

(12

(13]

ch? a(r)

0 .3287627+9
h .5976592+7
2 1

Table 2. Bounds Q(r) on the product Q(A,r).
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